If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5I^2-12=0
a = 5; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·5·(-12)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$I_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$I_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$I_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*5}=\frac{0-4\sqrt{15}}{10} =-\frac{4\sqrt{15}}{10} =-\frac{2\sqrt{15}}{5} $$I_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*5}=\frac{0+4\sqrt{15}}{10} =\frac{4\sqrt{15}}{10} =\frac{2\sqrt{15}}{5} $
| .a2+9=0 | | 5x+9=2*x+3 | | (x+15)=(5x-17) | | (6x+2)+(4x+18)=90 | | 9w+29=65 | | S^-5s-6=0 | | 14x^+16x+15=0 | | t2+12t-36=0 | | 2x(x-4)=15 | | 23x+47=185 | | 25w+750=200 | | 8^(x+1)=16x-3 | | n(B)=6 | | 2(3x-1)2x=14 | | -9-(x+1)=-2-(3x+5) | | 4(9x-6)=46 | | (2x-7)^2-49=0 | | 6y+2+3y+4=51 | | 2(a+7)=8-a | | (2x-7)^2=49 | | (x)^(-10)=32 | | 3*2n-1=3 | | 4x-(2-3x)+4x=20 | | 2(3x-1)=6x+5x | | 1350/(5+a)=150 | | 2y+y=-11y | | 2(h-6)=0 | | x-(0.09*x)=34000 | | 7a^2+51a+14=0 | | 25^-6x=5^4x+5 | | -3x^2+12x+576=0 | | x-(0.09*x)=21000 |